"phone number"

Department of Mathematics

Imperial College London

South Kensington Campus

London

SW7 2AZ

United Kingdom

Imperial College London

South Kensington Campus

London

SW7 2AZ

United Kingdom

Joanna B. Fawcett

I am a Marie Skłodowska-Curie Individual Fellow in the Department of Mathematics at Imperial College London.

I am interested in group theory, permutation group theory, algebraic combinatorics, finite geometry and representation theory.

Previously, I was an LMS Grace Chisholm Young Fellow in the Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge. Before that, I was a Research Associate in the Centre for the Mathematics of Symmetry and Computation at The University of Western Australia.
I obtained my PhD at the University of Cambridge, working with Jan Saxl on bases of primitive permutation groups.

Partial linear spaces with a rank 3 affine primitive group of automorphisms, J. Bamberg, A. Devillers, J. B. Fawcett, C. E. Praeger, *in preparation*.

On *k*-connected-homogeneous graphs, A. Devillers, J. B. Fawcett, C. E. Praeger, J.-X. Zhou, *submitted*. (See arXiv.)

Regular orbits of sporadic simple groups, J. B. Fawcett, J. Müller, E. A. O'Brien, R. A. Wilson, *submitted*. (See arXiv.)

Information transmission and signal permutation in active flow networks, F. G. Woodhouse, J. B. Fawcett, J. Dunkel, *New J. Phys.* **20**, 035003 (2018). (See arXiv or journal.)

Primitive permutation groups with a suborbit of length 5 and vertex-primitive graphs of valency 5, J. B. Fawcett, M. Giudici, C. H. Li, C. E. Praeger, G. Royle, G. Verret, *J. Combin. Theory Ser. A* **157**, 247-266 (2018). (See arXiv or journal.)

Bruck nets and partial Sherk planes, J. Bamberg, J. B. Fawcett, J. Lansdown, *J. Austral. Math. Soc.* **104**, 1-12 (2018). (See arXiv or journal.)

Stochastic cycle selection in active flow networks, F. G. Woodhouse, A. Forrow, J. B. Fawcett, J. Dunkel, *Proc. Natl. Acad. Sci. U.S.A.* **113**, 8200-8205 (2016). (See arXiv or journal.)

Locally triangular graphs and normal quotients of the n-cube, J. B. Fawcett, *J. Algebraic Combin* **44**, 119-130 (2016). (See arXiv or journal. See also erratum.)

Regular orbits of symmetric and alternating groups, J. B. Fawcett, E. A. O'Brien, J. Saxl, *J. Algebra* **458**, 21-52 (2016). (See preprint or journal.)

Base sizes of imprimitive linear groups and orbits of general linear groups on spanning tuples, J. B. Fawcett, C. E. Praeger, *Arch. Math.* **106**, 305-314 (2016). (See arXiv or journal.)

Locally triangular graphs and rectagraphs with symmetry, J. Bamberg, A. Devillers, J. B. Fawcett, C. E. Praeger, *J. Combin. Theory Ser. A* **133**, 1-28 (2015). (See arXiv or journal.)

The base size of a primitive diagonal group, J. B. Fawcett, *J. Algebra* **375**, 302-321 (2013). (See arXiv or journal.)

Bases of primitive permutation groups, *PhD Thesis*, University of Cambridge, 2013.

The O'Nan-Scott Theorem for finite primitive permutation groups,
and finite representability, *Master's Thesis*, University of Waterloo, 2009.